Tutorials A to Z » Blog Archives

Author Archives: Murali Thuraka

Mule 4 Mulesoft Basics Mulesoft Tutorial

Mule 4: JSON Schema Validation

Published by:

JSON Schema is a specification for JSON based format for defining the structure of JSON data. It validates input data at runtime and verifies that they match a referenced schema or not. We can match against defined schemas that exist in local file or in an external URI.

If the payload is incorrect with given JSON schema, then compiler throws below Exception:

org.mule.module.json.validation.JsonSchemaValidationException: Json content is not compliant with schema

Use Case:

Validating the input JSON payload against with JSON Schema.

JSON Payload:

{
  "firstName": "Murali",
  "lastName": "Krishna",
  "age" : 26
}	

JSON – Schema :

{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "firstName": {
      "type": "string"
    },
    "lastName": {
      "type": "string"
    },
    "age": {
      "type": "integer"
    }
  },
  "required": [
    "firstName",
    "lastName",
    "age"
  ]
}

Mule Flow:

Step -1 :

Configure the HTTP Listener with by giving hostname, port number and path along with this specify allowed methods (Optional) at an Advanced tab of HTTP connector.

Step-2:

Drag and Drop the JSON Validate Schema from Mule Palette to validate the input payload. And provide the schema path. In my case it is like below:

schemas/Sample-Schema.json

From above line,

schemas –> It is directory

Sample-Schema.json —> It is JSON-Schema structure for validation.

Syntax of JSON Validator as below:

<json:validate-schema doc:name="Validate schema" doc:id="5a8b10e1-59e8-4f68-9aaa-303c9cb5c9d6" schema="schemas/Sample-Schema.json">

Step-3:

Drag & Drop the Logger component to log the resultant payload after validation.

Final Config.xml:

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:json="http://www.mulesoft.org/schema/mule/json" xmlns:validation="http://www.mulesoft.org/schema/mule/validation"
  xmlns:ee="http://www.mulesoft.org/schema/mule/ee/core"
  xmlns:http="http://www.mulesoft.org/schema/mule/http" xmlns="http://www.mulesoft.org/schema/mule/core" xmlns:doc="http://www.mulesoft.org/schema/mule/documentation" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.mulesoft.org/schema/mule/core http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/http http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
http://www.mulesoft.org/schema/mule/ee/core http://www.mulesoft.org/schema/mule/ee/core/current/mule-ee.xsd
http://www.mulesoft.org/schema/mule/validation http://www.mulesoft.org/schema/mule/validation/current/mule-validation.xsd
http://www.mulesoft.org/schema/mule/json http://www.mulesoft.org/schema/mule/json/current/mule-json.xsd">
  <http:listener-config name="HTTP_Listener_config" doc:name="HTTP Listener config" doc:id="8a601d72-5913-4ed7-99d3-707601301ec9" >
    <http:listener-connection host="0.0.0.0" port="8080" />
  </http:listener-config>
  <flow name="abcFlow" doc:id="30917fd1-0429-4ec7-9d7d-aa8d4d19413e" >
    <http:listener doc:name="Listener" doc:id="2b89fed0-69ce-47eb-93bf-3bd0628fe188" config-ref="HTTP_Listener_config" path="abc" allowedMethods="POST">
      <ee:repeatable-file-store-stream />
    </http:listener>
    <json:validate-schema doc:name="Validate schema" doc:id="5a8b10e1-59e8-4f68-9aaa-303c9cb5c9d6" schema="schemas/Sample-Schema.json">
    </json:validate-schema>
    <logger level="INFO" doc:name="Logger" doc:id="26b62866-2f25-4374-9d95-9fe14c052366" message="Payload is Validated ----&gt; #[message.payload]" />
  </flow>
</mule>

Success Scenario:

Failed Scenario:

Thank you!

Please feel free to share your thoughts in the comments section.

Mule 4 Mulesoft Basics Mulesoft Tutorial

Mule – 4 DataWeave Functions – Part – 1

Published by:

In DataWeave 2.0 functions are categorized into different modules.

  1. Core (dw::Core)
  2. Arrays (dw::core::Arrays)
  3. Binaries (dw::core::Binaries)
  4. Encryption (dw::Crypto)
  5. Diff (dw::util::Diff)
  6. Objects (dw::core::Objects)
  7. Runtime (dw::Runtime)
  8. Strings (dw::core::Strings)
  9. System (dw::System)
  10. URL (dw::core::URL)

Functions defined in Core (dw::Core) module are imported automatically into your DataWeave scripts. To use other modules, we need to import them by adding the import directive to the head of DataWeave script, for example:

import dw::core::Strings

import dasherize, underscore from dw::core::Strings

import * from dw::core::Strings

Sample Payload:
{
"firstName" : "Murali",
"lastName" : "Krishna",
"age" : "26",
“age” : ”26”
}

1. Core (dw::Core)

Below are the DataWeave 2 core functions:

++ , –, abs, avg, ceil, contains, daysBetween, distinctBy, endsWith, filter, IsBlank, joinBy, min, max etc….

result : [0, 1, 2] ++ [“a”, “b”, “c”] will gives us “result” : “[0, 1, 2, “a”, “b”, “c”]”

result : [0, 1, 1, 2] — [1,2] will gives us “result” : “[0]”

result : abs(-20) will gives us “result” : 20

average : avg([1, 1000]) will gives us “average” : 500.5

value : ceil(1.5) will gives us “value” : 2

result : payload contains “Krish” will gives us “result” : true

days: daysBetween(“2016-10-01T23:57:59-03:00”, “2017-10-01T23:57:59-03:00”) will gives us “days”: 365

age : payload distinctBy $ will gives us  :

 {

“firstName” : “Murali”,

“lastName” : “Krishna”,

“age” : ”26”

}

a: “Murali” endsWith “li” will gives us “a” : true

a: [1, 2, 3, 4, 5] filter($ > 2) will gives us “a” : [3,4,5]

empty: isBlank(“”) will gives us “empty” : true

aa: [“a”,”b”,”c”] joinBy “-” will gives us “a” : “a-b-c”

a: min([1, 1000]) will gives us “a” : 1

a: max([1, 1000]) will gives us “a” : 1000

2.Arrays (dw::core::Arrays)

Arrays related functions in DataWeave are :

countBy, divideBy, every, some, sumBy

[1, 2, 3] countBy (($ mod 2) == 0) will gives us 1

[1,2,3,4,5] dw::core::Arrays::divideBy 2 will gives us :

[

[

1,

2

],

[

3,

4

],

[

5

]

]

 

[1,2,3,4] dw::core::Arrays::every ($ == 1) will gives us “false”

[1,2,3,4] dw::core::Arrays::some ($ == 1) will gives us “true”

[ { a: 1 }, { a: 2 }, { a: 3 } ] sumBy $.a will gives us “6”

3.Binaries (dw::core::Binaries)

Binary functions in DataWeave-2 are:

fromBase64, fromHex, toBase64, toHex

toBase64(fromBase64(12463730)) will gives us “12463730”

{ “binary”: fromHex(‘4D756C65’)} will gives us “binary” : “Mule”

{ “hex” : toHex(‘Mule’) } will gives us “hex” : “4D756C65”

4.Encryption (dw::Crypto)

Encryption functions in Dataweave – 2 are:

HMACBinary, HMACWith, MD5, SHA1, hashWith

{ “HMAC”: Crypto::HMACBinary((“aa” as Binary), (“aa” as Binary)) } will gives us :

“HMAC”: “\u0007£š±]\u00adÛ\u0006‰\u0006Ôsv:ý\u000b\u0016çÜð”

Crypto::MD5(“asd” as Binary) will gives us “7815696ecbf1c96e6894b779456d330e”

Crypto::SHA1(“dsasd” as Binary) will gives us “2fa183839c954e6366c206367c9be5864e4f4a65”

5.Diff (dw::util::Diff)

It calculates difference between two values and returns list of differences.

DataWeave Script:

%dw 2.0

import * from dw::util::Diff

output application/json

var a = { age: “Test” }

var b = { age: “Test2” }

a diff b

Output:

{

“matches”: false,

“diffs”: [

{

“expected”: “\”Test\””,

“actual”: “\”Test2\””,

“path”: “(root).age”

}

]

}

Note:

Rest of the things will proceed in Mule – 4 DataWeave Functions Part – 2 article

Mule 4 Mulesoft Basics Mulesoft Tutorial

DataWeave 1.0 to DataWeave 2.0 Migration – Part -1

Published by:

DataWeave is a new feature of Mule-3 that allows us to convert data to any kind of format, such as XML, CSV, JSON and POJO’s etc. In Mule 3, we use both MEL and Dataweave for writing the mule messages. Among these, MEL is default expression language in Mule 3 But this approach had some data inconsistencies and scattered approaches. To avoid the stress of converting data objects to Java objects in Mule 3 every time by the usage of expressions Mule 4 was launched. In Mule 4 DataWeave is the default expression language over Mule 3’s default MEL.

In Mule-4 DataWeave version has changed from 1.0 to 2.0.

Apart from syntax changes, there are many new features in DataWeave 2.0

Continue reading