Category Archives: Mule 4

Mule 4

Inbound Outbound Properties

Published by:

In this “Inbound Outbound Properties” tutorial of Mule 4 we will look on how we can set and modify Mule Inbound and Outbound Properties.

In Mule Inbound properties referees to the additional information that comes to an Mule API along with the message body/payload itself. It may consist of inbound Headers, Query Params, URI Params, HTTP method etc.
In Mule Inbound properties are preset by the sender of the message thus cannot be added or modified.

Mule Outbound Properties are headers and properties that Mule API set before ending its request to other external systems.

Inbound Properties
In Mule 3 we used to access inbound properties by #[message.inboundProperties]

Whereas in Mule 4 we access these properties by #[attributes]

Example
We have create a simple project using RAML.
The GET method of the RAML has URI Param – user_id, which can assess by #[attributes.uriParams['user_id']]

Similarly to access Query Param we do it by #[attributes.queryParams['code']]

To view all the Inbound Properties that are received by a Mule API:

#[attributes]


Output :

 

Outbound Properties
As in Mule 3 we used to set outbound properties via using Set Property Component.
In Mule 4, outbound properties no longer exist. Instead, the headers or properties (e.g. HTTP headers or JMS properties) that you wish to send as part of a request or message (e.g. HTTP request or JMS message) respectively are now configured explicitly as part of the connector operation configuration. 
Example:
To Set the outbound HTTP headers and HTTP status code for a Mule API we need to modify the HTTP Listener Configuration.

SoapUI Output –

Mule 4 Mulesoft Basics Mulesoft Tutorial

Variables in Mule 4

Published by:

Variable in Mule 4


In this Variable in Mule 4 tutorial we will look how we can create and use mule variable in Mule 4, and how it is different from Mule 3 and Mule 4.

In Mule 3 we had Flow variables, Session variables and record variable to store the data inside mule flow. But now in Mule 4 this has been changed; session variable and record variable has been removed and there is only Flow Variable.

As in Mule 3, Flow Variable in Mule 4 value is lost even when the flow crosses the transport barrier.
Session variable has been completely removed in Mule 4.

In Mule 4, flow variables have been enhanced to work efficiently during batch processing, just like the record variables. Flow variables created in batch steps are now automatically tied to the processing record and stays with it throughout the processing phase. No longer record variables are needed.
Continue reading

Mule 4 Mulesoft Basics Mulesoft Tutorial

Mule 4: JSON Schema Validation

Published by:

JSON Schema is a specification for JSON based format for defining the structure of JSON data. It validates input data at runtime and verifies that they match a referenced schema or not. We can match against defined schemas that exist in local file or in an external URI.

If the payload is incorrect with given JSON schema, then compiler throws below Exception:

org.mule.module.json.validation.JsonSchemaValidationException: Json content is not compliant with schema

Use Case:

Validating the input JSON payload against with JSON Schema.

JSON Payload:

{
  "firstName": "Murali",
  "lastName": "Krishna",
  "age" : 26
}	

JSON – Schema :

{
  "$schema": "http://json-schema.org/draft-04/schema#",
  "type": "object",
  "properties": {
    "firstName": {
      "type": "string"
    },
    "lastName": {
      "type": "string"
    },
    "age": {
      "type": "integer"
    }
  },
  "required": [
    "firstName",
    "lastName",
    "age"
  ]
}

Mule Flow:

Step -1 :

Configure the HTTP Listener with by giving hostname, port number and path along with this specify allowed methods (Optional) at an Advanced tab of HTTP connector.

Step-2:

Drag and Drop the JSON Validate Schema from Mule Palette to validate the input payload. And provide the schema path. In my case it is like below:

schemas/Sample-Schema.json

From above line,

schemas –> It is directory

Sample-Schema.json —> It is JSON-Schema structure for validation.

Syntax of JSON Validator as below:

<json:validate-schema doc:name="Validate schema" doc:id="5a8b10e1-59e8-4f68-9aaa-303c9cb5c9d6" schema="schemas/Sample-Schema.json">

Step-3:

Drag & Drop the Logger component to log the resultant payload after validation.

Final Config.xml:

<?xml version="1.0" encoding="UTF-8"?>

<mule xmlns:json="http://www.mulesoft.org/schema/mule/json" xmlns:validation="http://www.mulesoft.org/schema/mule/validation"
  xmlns:ee="http://www.mulesoft.org/schema/mule/ee/core"
  xmlns:http="http://www.mulesoft.org/schema/mule/http" xmlns="http://www.mulesoft.org/schema/mule/core" xmlns:doc="http://www.mulesoft.org/schema/mule/documentation" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.mulesoft.org/schema/mule/core http://www.mulesoft.org/schema/mule/core/current/mule.xsd
http://www.mulesoft.org/schema/mule/http http://www.mulesoft.org/schema/mule/http/current/mule-http.xsd
http://www.mulesoft.org/schema/mule/ee/core http://www.mulesoft.org/schema/mule/ee/core/current/mule-ee.xsd
http://www.mulesoft.org/schema/mule/validation http://www.mulesoft.org/schema/mule/validation/current/mule-validation.xsd
http://www.mulesoft.org/schema/mule/json http://www.mulesoft.org/schema/mule/json/current/mule-json.xsd">
  <http:listener-config name="HTTP_Listener_config" doc:name="HTTP Listener config" doc:id="8a601d72-5913-4ed7-99d3-707601301ec9" >
    <http:listener-connection host="0.0.0.0" port="8080" />
  </http:listener-config>
  <flow name="abcFlow" doc:id="30917fd1-0429-4ec7-9d7d-aa8d4d19413e" >
    <http:listener doc:name="Listener" doc:id="2b89fed0-69ce-47eb-93bf-3bd0628fe188" config-ref="HTTP_Listener_config" path="abc" allowedMethods="POST">
      <ee:repeatable-file-store-stream />
    </http:listener>
    <json:validate-schema doc:name="Validate schema" doc:id="5a8b10e1-59e8-4f68-9aaa-303c9cb5c9d6" schema="schemas/Sample-Schema.json">
    </json:validate-schema>
    <logger level="INFO" doc:name="Logger" doc:id="26b62866-2f25-4374-9d95-9fe14c052366" message="Payload is Validated ----&gt; #[message.payload]" />
  </flow>
</mule>

Success Scenario:

Failed Scenario:

Thank you!

Please feel free to share your thoughts in the comments section.

Mule 4 Mulesoft Basics Mulesoft Tutorial

Mule – 4 DataWeave Functions – Part – 1

Published by:

In DataWeave 2.0 functions are categorized into different modules.

  1. Core (dw::Core)
  2. Arrays (dw::core::Arrays)
  3. Binaries (dw::core::Binaries)
  4. Encryption (dw::Crypto)
  5. Diff (dw::util::Diff)
  6. Objects (dw::core::Objects)
  7. Runtime (dw::Runtime)
  8. Strings (dw::core::Strings)
  9. System (dw::System)
  10. URL (dw::core::URL)

Functions defined in Core (dw::Core) module are imported automatically into your DataWeave scripts. To use other modules, we need to import them by adding the import directive to the head of DataWeave script, for example:

import dw::core::Strings

import dasherize, underscore from dw::core::Strings

import * from dw::core::Strings

Sample Payload:
{
"firstName" : "Murali",
"lastName" : "Krishna",
"age" : "26",
“age” : ”26”
}

1. Core (dw::Core)

Below are the DataWeave 2 core functions:

++ , –, abs, avg, ceil, contains, daysBetween, distinctBy, endsWith, filter, IsBlank, joinBy, min, max etc….

result : [0, 1, 2] ++ [“a”, “b”, “c”] will gives us “result” : “[0, 1, 2, “a”, “b”, “c”]”

result : [0, 1, 1, 2] — [1,2] will gives us “result” : “[0]”

result : abs(-20) will gives us “result” : 20

average : avg([1, 1000]) will gives us “average” : 500.5

value : ceil(1.5) will gives us “value” : 2

result : payload contains “Krish” will gives us “result” : true

days: daysBetween(“2016-10-01T23:57:59-03:00”, “2017-10-01T23:57:59-03:00”) will gives us “days”: 365

age : payload distinctBy $ will gives us  :

 {

“firstName” : “Murali”,

“lastName” : “Krishna”,

“age” : ”26”

}

a: “Murali” endsWith “li” will gives us “a” : true

a: [1, 2, 3, 4, 5] filter($ > 2) will gives us “a” : [3,4,5]

empty: isBlank(“”) will gives us “empty” : true

aa: [“a”,”b”,”c”] joinBy “-” will gives us “a” : “a-b-c”

a: min([1, 1000]) will gives us “a” : 1

a: max([1, 1000]) will gives us “a” : 1000

2.Arrays (dw::core::Arrays)

Arrays related functions in DataWeave are :

countBy, divideBy, every, some, sumBy

[1, 2, 3] countBy (($ mod 2) == 0) will gives us 1

[1,2,3,4,5] dw::core::Arrays::divideBy 2 will gives us :

[

[

1,

2

],

[

3,

4

],

[

5

]

]

 

[1,2,3,4] dw::core::Arrays::every ($ == 1) will gives us “false”

[1,2,3,4] dw::core::Arrays::some ($ == 1) will gives us “true”

[ { a: 1 }, { a: 2 }, { a: 3 } ] sumBy $.a will gives us “6”

3.Binaries (dw::core::Binaries)

Binary functions in DataWeave-2 are:

fromBase64, fromHex, toBase64, toHex

toBase64(fromBase64(12463730)) will gives us “12463730”

{ “binary”: fromHex(‘4D756C65’)} will gives us “binary” : “Mule”

{ “hex” : toHex(‘Mule’) } will gives us “hex” : “4D756C65”

4.Encryption (dw::Crypto)

Encryption functions in Dataweave – 2 are:

HMACBinary, HMACWith, MD5, SHA1, hashWith

{ “HMAC”: Crypto::HMACBinary((“aa” as Binary), (“aa” as Binary)) } will gives us :

“HMAC”: “\u0007£š±]\u00adÛ\u0006‰\u0006Ôsv:ý\u000b\u0016çÜð”

Crypto::MD5(“asd” as Binary) will gives us “7815696ecbf1c96e6894b779456d330e”

Crypto::SHA1(“dsasd” as Binary) will gives us “2fa183839c954e6366c206367c9be5864e4f4a65”

5.Diff (dw::util::Diff)

It calculates difference between two values and returns list of differences.

DataWeave Script:

%dw 2.0

import * from dw::util::Diff

output application/json

var a = { age: “Test” }

var b = { age: “Test2” }

a diff b

Output:

{

“matches”: false,

“diffs”: [

{

“expected”: “\”Test\””,

“actual”: “\”Test2\””,

“path”: “(root).age”

}

]

}

Note:

Rest of the things will proceed in Mule – 4 DataWeave Functions Part – 2 article

Mule 4 Mulesoft Basics Mulesoft Tutorial

DataWeave 1.0 to DataWeave 2.0 Migration – Part -1

Published by:

DataWeave is a new feature of Mule-3 that allows us to convert data to any kind of format, such as XML, CSV, JSON and POJO’s etc. In Mule 3, we use both MEL and Dataweave for writing the mule messages. Among these, MEL is default expression language in Mule 3 But this approach had some data inconsistencies and scattered approaches. To avoid the stress of converting data objects to Java objects in Mule 3 every time by the usage of expressions Mule 4 was launched. In Mule 4 DataWeave is the default expression language over Mule 3’s default MEL.

In Mule-4 DataWeave version has changed from 1.0 to 2.0.

Apart from syntax changes, there are many new features in DataWeave 2.0

Continue reading